The roles of somatostatin-expressing (GIN) and fast-spiking inhibitory interneurons in UP-DOWN states of mouse neocortex.

نویسندگان

  • Erika E Fanselow
  • Barry W Connors
چکیده

The neocortex contains multiple types of inhibitory neurons whose properties suggest they may play different roles within the cortical circuit. By recording from three cell types during two distinct network states (UP and DOWN states) in vitro, we were able to quantify differences in firing characteristics between these cells during different network regimes. We recorded from regular-spiking (RS) excitatory cells and two types of inhibitory neurons, the fast-spiking (FS) neurons and GFP- (and somatostatin-) expressing inhibitory neurons (GIN), in layer 2/3 of slices from mouse somatosensory neocortex. Comparisons of firing characteristics between these cells during UP- and DOWN-states showed several patterns. First, of these cell types, only GIN cells fired persistently during DOWN-states, whereas all three cell types fired readily during UP-states. Second, the onset of firing and distribution of action potentials throughout UP-states differed by cell type, showing that FS cell UP-state firing occurred preferentially near the beginning of the UP-state, whereas the firing of RS cells was slower to develop at the start of the UP-state, and GIN cell firing was sustained throughout the duration of the UP-state. Finally, membrane potential and spike correlations between heterogeneous cell types were more pronounced during UP-states and, in the case of RS synapses onto GIN cells, varied throughout the UP-state. These results suggest that there is a division of labor between FS and GIN cells as the UP-state progresses and suggest that GIN cells could be important in the termination of UP-states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The roles of somatostatin - expressing ( GIN ) and fast - spiking inhibitory 1 interneurons in UP - DOWN states of mouse neocortex

25 The neocortex contains multiple types of inhibitory neurons whose properties suggest 26 they may play different roles within the cortical circuit. By recording from three cell 27 types during two distinct network states (“UP” and “DOWN” states) in vitro, we were 28 able to quantify differences in firing characteristics between these cells during different 29 network regimes. We recorded from...

متن کامل

Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex.

The specific functions of subtypes of cortical inhibitory neurons are not well understood. This is due in part to a dearth of information about the behaviors of interneurons under conditions when the surrounding circuit is in an active state. We investigated the firing behavior of a subset of inhibitory interneurons, identified using mice that express green fluorescent protein (GFP) in a subset...

متن کامل

Inhibition by Somatostatin Interneurons in Olfactory Cortex

Inhibitory circuitry plays an integral role in cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform ...

متن کامل

Electrophysiological classification of somatostatin-positive interneurons in mouse sensorimotor cortex.

Classification of inhibitory interneurons is critical in determining their role in normal information processing and pathophysiological conditions such as epilepsy. Classification schemes have relied on morphological, physiological, biochemical, and molecular criteria; and clear correlations have been demonstrated between firing patterns and cellular markers such as neuropeptides and calcium-bi...

متن کامل

Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome.

Haploinsufficiency of the voltage-gated sodium channel NaV1.1 causes Dravet syndrome, an intractable developmental epilepsy syndrome with seizure onset in the first year of life. Specific heterozygous deletion of NaV1.1 in forebrain GABAergic-inhibitory neurons is sufficient to cause all the manifestations of Dravet syndrome in mice, but the physiological roles of specific subtypes of GABAergic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 104 2  شماره 

صفحات  -

تاریخ انتشار 2010